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Abstract—Distributed transactions, which access data items
at multiple sites atomically, face well-known scalability chal-
lenges. To avoid the high overhead, in prior work Fan et
al. proposed Epoch-based Concurrency Control (ECC), which
makes transactions visible at epoch boundaries, and presented
a system that supports high performance read-only and write-
only transactions. However, this idea has a clear difficulty to
overcome: the common case of a single transaction that does
both reading and writing. This paper proposes ALOHA-DB,
a scalable distributed transaction processing system. ALOHA-
DB uses a novel paradigm of serializable transaction processing
using functors, which conceptually resemble futures in modern
programming languages. A functor is a placeholder for the
value of a key, which can be computed asynchronously in the
future in parallel with other functor computations of the same
or other transactions. With multi-versioning in ECC, the func-
tor computations only rely on accessing historical versions, and
so the traditional locking mechanism is not needed for concur-
rency control. Functors elevate ECC to a new level: supporting
serializable distributed read-write transactions. This combina-
tion of techniques never aborts transactions due to read-write
or write-write conflicts, but allows transactions to fail due to
logic errors or constraint violations. We used functor-enabled
ECC to implement ALOHA-DB and evaluated it using TPC-
C and YCSB read-write distributed transactions. Experimental
results demonstrate that our system’s performance on the TPC-
C benchmark is nearly 2 million transactions per second over
20 eight-core virtual machines, which outperforms Calvin, a
state-of-the-art transaction processing and replication layer, by
one to two orders of magnitude.
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I. INTRODUCTION

Transactions in distributed storage systems are inherently

costly in two ways: they require concurrency control for

isolation in the presence of read-write and write-write con-

flicts, and they rely on distributed commitment protocols

to ensure atomicity in the presence of failures. The cost

of such transactions is especially high for update-intensive

workloads in a distributed environment, where conventional

techniques fare poorly. In particular, two-phase locking leads

to aborts due to (suspected or actual) deadlock, optimistic

protocols suffer from aborts due to contention, and two-

phase commit (2PC) increases the abort rate further by

enlarging the “contention footprint” of a transaction [1], [2].

These conventional techniques take a transaction as the basic

unit of concurrency control, meaning that a transaction can

only commit keys after all conflicts for these keys have been

resolved by holding locks or completing backward validation

in optimistic protocols. We refer to these techniques as

transaction-level concurrency control.

Calvin [2]–[4] aims to boost performance for serializable

distributed transactions under contention by enforcing deter-
ministic transaction execution scheduling on all partitions to

prevent aborts, which avoids wasted work due to transaction

restarts but introduces its own overhead. By assuming all

involved partitions will successfully execute transactions

according to the same deterministic scheduling, a transaction

is able to commit keys for one partition as long as all

conflicts for these keys have been resolved, irrespective of

any unresolved conflict on other partitions. We refer to these

methods as partition-level concurrency control, which gains

more parallelism than the transaction-level scheme in high

contention distributed transaction processing.

Recently, the epoch-based concurrency control (ECC) [5]

mechanism was introduced for high performance serializable

distributed read-only and write-only (RO/WO) transactions.

ECC keeps reads and writes completely separated in time,

but it has a clear difficulty to overcome: the common case

of a single transaction that does both reading and writing.

This paper proposes a new scalable distributed transaction

processing system called ALOHA-DB. ALOHA-DB ex-

ploits a novel paradigm of serializable transaction processing

using functors, which conceptually resemble futures [6] in

modern programming languages. A functor is a placeholder

for the value of a key, and this value can be computed

asynchronously in the future in parallel with other func-

tor computations. Functors elevate ECC to a new level:

supporting high performance serializable distributed read-

write transactions. In functor-enabled ECC, a read-write

transaction is executed in two phases: a write-only phase that

uses a write-only transaction to store a collection of functors
under the low overhead of ECC; and a computing phase that

determines the outcomes of the functors asynchronously.

ECC permits transactions to first write operator place-

holders (in the form of functors) without any contention

in write epochs, and then compute the outcomes of the

operators (functors) asynchronously and in parallel after the

write epoch when the order of transactions is fixed. This

combination of techniques never aborts transactions due to

read-write or write-write conflicts, and yet allows transac-

tions to fail due to logic errors or constraint violations, while

guaranteeing serializability.
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With multi-versioning in ECC, the functor computations

only rely on accessing historical versions, and so the tra-

ditional locking mechanism is not needed for concurrency

control. ECC uses timestamp ordering and a decentralized

timestamp assignment method, which easily resolve trans-

action ordering across servers. Without lazily materialized

functors, conventional concurrency controls need to resolve

the read-write conflicts (assuming a transaction reads before

it writes) before writing any keys, which may delay both

reads and writes in the transaction, thus increasing the

contention footprint and hurting performance further.

Functors also enable more fine-grained concurrency con-

trol than in partition-level or transaction-level schemes, and

distribute the work for a given transaction in a manner

that tends to co-locate computation with storage. First,
functor computing only focuses on how to compute the

value of a key, thus only requires key-level concurrency

control (i.e., resolving conflicts for generating the value of

the functor’s key) when ECC already guarantees transaction

atomicity and resolves transaction orders. Second, a functor

is computed on the host where the functor’s key is stored,

thus the transaction processing overhead can be distributed

and offloaded to all the participant partitions.

On the TPC-C benchmark for distributed read-write

transactions and a YCSB-like microbenchmark, ALOHA-

DB outperforms Calvin [2]–[4] – a state-of-the-art high-

performance distributed transaction layer that uses determin-

istic scheduling – by 1-2 orders of magnitude in terms of

throughput, while also maintaining lower latency. Further-

more, ALOHA-DB allows transactions to abort due to logic

errors, as required by the benchmark.

II. REVIEW OF EPOCH-BASED CONCURRENCY CONTROL

ECC [5] is a technique that achieves serializable transac-

tion isolation and high parallelism for RO/WO transactions.

ECC was designed for an in-memory database partitioned

across multiple servers connected by a high-speed network

in a single private cluster. Tight clock synchronization across

servers benefits performance but is not required for correct-

ness of ECC. Standard synchronization techniques suffice,

such as NTP executed over a low-latency network.

Conceptually, ECC combines two techniques to mitigate

conflicts between transactions. First, ECC schedules RO/WO

transactions into disjoint time slots, called read and write

epochs, to eliminate read-write conflicts between the two

groups. Second, ECC uses multi-versioning to resolve write-

write conflicts in write epochs, which allows update trans-

actions to proceed in parallel even when their write sets

overlap. In addition, ECC avoids 2PC and enables atomic

commitment of distributed transactions in amortized one

round trip.

A server can start processing a transaction only if it holds

an appropriate authorization, which is granted by the epoch
manager (EM). An authorization comprises the epoch type
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Figure 1. ALOHA-DB architecture.

(read or write), as well as two timestamps indicating a

finite validity period. Transaction timestamps are obtained

using local clocks of servers, and a server can only start

a transaction when its local clock is within the validity

period. A server may hold at most one authorization at

a time, ensuring exclusion between reads and writes. The

ECC mechanism guarantees that all write transactions started

within an epoch are completed before any of the updates are

visible to transactions that start in subsequent epochs. One

salient feature of ECC is that it orders transactions using

timestamps generated in a decentralized manner. A write

transaction is assigned a timestamp within the authorization

validity period as the transaction version number when it is

started by a server. The server guarantees that the timestamp

is globally unique and is within the epoch’s validity period to

ensure a valid serialization order of transactions [5]. Without

using locking and without rejecting obsolete updates, ECC

enforces the property that the outcomes of writes can only

be observed when the next epoch begins.

III. THE ALOHA-DB SYSTEM

ALOHA-DB is a scalable multi-version in-memory trans-

action processing system that supports serializable dis-

tributed transactions. Using a combination of ECC and

functors (detailed in the next section), our system minimizes

conflicts among transactions. This section describes the

system design of ALOHA-DB and focuses on the novel

design points as compared to ALOHA-KV [5], which does

not support read-write transactions.

A. Architecture

ALOHA-DB is optimized for deployment in a private data

center with a high-speed network. Although not necessary

for correctness, good network performance and predictability

(e.g., low jitter) help our system achieve high throughput

and low latency. Specifically, the network latency helps to

reduce the epoch switch time, during which no transaction

can be started, and benefits clock synchronization among

servers when NTP protocol is used. The architecture of

ALOHA-DB, illustrated in Figure 1, comprises a collection
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of servers and an epoch manager (EM). From the transaction

processing perspective, the functor computing layer is built

on top of the read-only and write-only transaction processing

layer, which is derived from the previous work [5]. Each

server performs the functions of both backends (BEs) and

frontends (FEs), as in prior work [5]. To facilitate under-

standing the relationship between ALOHA-DB and [5], we

use the terms FE and BE also while describing our system,

with the understanding that both terms refer to the same

server process.

The EM controls epoch changes by granting and revoking

authorization at all the FEs, and thus determines when

the FEs may start executing transactions. An FE accepts

transaction requests from clients, and acts as a transaction

coordinator: it starts transaction execution during the correct

epoch, generates a timestamp for each transaction, translates

transactions to functors (if applicable), communicates with

the partitions, and determines the outcome of the BEs. A BE

stores the data items in one partition of the database, and

serves requests from FEs to read and write these items or

functors. BEs also compute functors asynchronously using a

component called the processor. Whenever there is a functor

that is ready to be computed, the BE will push it to a queue
that will be pulled by the processor. To compute the functors,

processors may need to read remotely from other BEs or

push data to them. Further details of functor computing are

provided in Section IV.

ALOHA-DB is able to leverage the fault tolerance strate-

gies of replication, logging, and checkpointing described

in [5] to achieve reliable epoch switching and to avoid data

loss in the presence of a single crash failure.

B. Unified Epochs

ALOHA-DB unifies the two epoch types described in

Section II to the unified epochs (write epochs), in which

write-only transactions and reads accessing old historical

versions can be processed at any time. For a read-only trans-

action requesting the latest version, we adopt an optimization

that transforms the transaction to an equivalent read-only

transaction for a historical version.

In ALOHA-DB, there is only a series of write epochs in

the system. When an FE receives a read-only transaction

for the latest version, the FE assigns a timestamp t to the

transaction in the write epoch, and delays processing the

transaction until the next write epoch begins. Then, the read-

only transaction is processed as a read of historical version t.
Informally speaking, the read-only transaction is processed

as if it happens at t, but it never conflicts with any write

transaction within subsequent write epochs.

By eliminating read epochs, ALOHA-DB allows writes

to execute faster because there is no longer any read epoch

that might block write transactions, while the latest version

read latencies may increase because an FE will always delay

such read transactions. However, as described in Section IV,

delay read
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Figure 2. Illustration of unified epochs.
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Figure 3. Avoiding straggler side effects by allowing transactions to start
without authorization.

a read-write transaction in ALOHA-DB begins reading keys

in the read set only after the epoch of the write-only

phase completes, and so no additional waiting is required

in that case. Moreover, the penalty on read latency for this

optimization is bounded by the epoch duration length, which

may be tolerable by users when a small epoch duration is

used.

Figure 2 illustrates an example of ECC with unified

epochs. Transaction 1, a write-only transaction, can be

executed during the validity period. Transaction 2, a read-

only transaction accessing the latest version, is assigned

a timestamp indicating the current version of the data. In

the next epoch, the read transaction will be processed as a

historical read for the assigned timestamp. Transaction 3,

a read-write transaction, has a write-only phase similar to

transaction 1 in which it writes the functors to the BEs, and

a functor computing phase that may include historical reads

similar to transaction 2 using the timestamp assigned in the

write-only phase.

C. Avoiding Straggler Side Effects

A straggler transaction is one that prevents an FE from

revoking an authorization for a long time. It may delay the

start of the next epoch for all FEs, and further degrade

the overall throughput. Figure 3 illustrates an example of
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Figure 4. The storage multi-verioning layout for one key.

a delayed epoch due to a straggler at FE1. In the absence of

anomalies, stragglers are unlikely to occur in our system,

because the number of in-flight transactions (preventing

authorization revocation) decreases to zero after the epoch’s

finish timestamp is reached, and functor computing occurs

asynchronously outside of the epochs.

However, stragglers remain possible in anomalous cases,

and for this reason we devise an optimization that avoids the

situation where one straggler prevents all FEs from starting

the next epoch. It works as follows: FEs can start executing

transactions immediately after the authorization is revoked

(even without any authorization), as illustrated using the

orange bricks between ts2 and ts3 in Figure 3. These trans-

actions become visible together with transactions started

in the following epoch (between ts3 and ts4). However,

this optimization must guarantee that timestamps generated

without authorization are smaller than the finish timestamp

of the next epoch (ts4), as otherwise serializability may

be violated. This can be guaranteed by requiring that a

transaction without authorization receives a timestamp not

exceeding the sum of the previous epoch’s finish timestamp

(ts2) and the duration of the next epoch.

D. Multi-version Storage

ALOHA-DB stores key-functor pairs in a hash-partitioned

distributed table. A concrete value of a key is the final form

of a functor (see details in Section IV). The functors are

versioned to support historical queries, as well as to enable

multi-version concurrency control. Figure 4 shows the layout

of the versions for one key. For each key, the functors are

organized in a logical list ordered by version, implemented

as a linked list of arrays. Each version record comprises a

version number and a functor. The ordered versions favor

accessing the latest version not exceeding a given version

number and computing functors for a key in ascending

order of versions. As explained in Section III-B, the reads

in ALOHA-DB are all historical reads, and the writes are

assigned a version equal to their timestamp. As a result, the

versions are inserted in nearly sorted order, and so ordered

versions are maintained easily.

The API functions Put and Get are used for accessing

the storage layer. A Put invoked on a new version of a

functor requires the version number to be within the epoch

validity period. A Get returns the latest version of a key’s

value not exceeding the requested version. All reads in

ALOHA-DB only access historical versions which are less

than the epoch start timestamp. Thus, the versions for each

key are naturally divided into the in-epoch category and the

out-epoch category by the epoch start timestamp. Versions

within the in-epoch category are not visible for reading;

versions in the out-epoch category are immutable except

that functor computing may replace the functor with its final

value. Get triggers the functor computing if the functor to

be read is not a final value, and replaces this functor with

its final value.

Each key also maintains a special version number called

the value watermark, below which all the versions are

the final value after the functor computing phase (detailed

in Section IV). Accessing a version below the value wa-

termark needs no synchronization because these versions

are immutable. In the implementation, we use a lock-free

data structure to allow multiple threads to read the storage

concurrently.

IV. FUNCTORS

Functors resemble futures [6] in programming language

research, which are objects used to represent the future

result of asynchronous computations. Functor computing

only reads historical versions, thus no locking mechanism

is needed on keys when multi-version storage is used.

In contrast to other mechanisms that use transaction-level

or partition-level concurrency control, functor-enabled ECC

uses functors as placeholders for values in the write set, and

the functors of a transaction are computed independently and

in parallel. While the basic ECC mechanism provides trans-

action atomicity and transaction ordering, functor-enabled

ECC further adds a key-level concurrency control scheme

for read-write transactions that enables high parallelism even

under contention.

A. Transaction Lifecycle

From the client’s point of view, our transaction model

is similar to Calvin [2]. We assume that transactions are

submitted “one-shot” (i.e., non-interactively) from clients

and processed by invoking stored procedures at servers. A

transaction is expressed as a read set and a write set (of

keys), as well as a set of arguments supplied by the client.

The keys accessed by a transaction must be known ahead

of time, which is a restriction also present in Calvin. But

ALOHA-DB does not have this restriction for read-only

transactions for historical versions, which are common in

analytic workloads. Section IV-E discusses the work-around

for this restriction.
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The lifecycle of a read-write transaction in functor-

enabled ECC includes the following phases: (1) The FE

transforms the transaction to key-functor pairs that are

written to the storage system in a write epoch. Each key

in the transaction write set will have a functor representing

the value of the key after the transaction is executed. All the

functors of a transaction share the same transaction version

(timestamp). (2) The functors are computed asynchronously

after the write epoch, or on-demand at the time of a read.

Once computed, each functor is updated with an immutable

final value. Each functor can therefore be computed at

most once. (3) Based on the client’s request, the FEs can

acknowledge the transaction execution result once the write-

only phase completes, or when the functor computing phase

completes. If the transaction may be aborted in the functor

computing phase, the former acknowledgment option still

allows clients to learn the transaction outcome (commit or

abort) by issuing a separate read request for the result of any

of the transaction’s functors, because any of the functors will

result in abort if the transaction is aborted.

B. Functors for Read-Write Transactions

Interface. A functor is composed of an f-type and an

f-argument. The f-type specifies which handler to call to

compute the functor. The f-argument is a blob whose in-

terpretation is based on the f-type. Table I shows some

examples of f-types and their f-argument representations.

f-type f-argument
VALUE the literal value of the key

ABORTED none
DELETED none

ADD/SUBTR numerical (e.g., increment value by 1)
MAX/MIN numerical (e.g., update the value if it is smaller)

user-defined ... read set and arguments

Table I
EXAMPLES OF SOME F-TYPES AND THEIR F-ARGUMENT

REPRESENTATIONS.

The f-type VALUE denotes that the f-argument itself

is the value, hence no computing is needed for this kind

of functor. The f-type ABORTED means that this version

of the value is aborted, while the f-type DELETED is

a tombstone of the key, denoting that this key is deleted

as of this version. The functors of other f-types require

computation that may replace the functor by the value of

a key.

Programmers can also create user-defined f-types and the

corresponding f-arguments. The user-defined f-type indicates

which handler to call for computing the functor. The user-

defined f-argument has a functor read set and arguments,

which indicate the inputs for the handler. In particular, the

functor computing phase requires reading all keys in the

functor read set for the latest version not exceeding the

functor version. The read set of some functors comprises

only the key to which the functor was written, in which

case the read set is omitted (e.g., ADD, SUBTR, MAX,

MIN).

Transforming a transaction to functors. In general,

to generate a functor for a key in the write set, we can

generate the f-argument by taking the transaction read set

and any arguments that influence the result of the key.

The corresponding functor handler can be generated in a

similar way. In the current implementation, transactions

are transformed to functors manually and automating this

process is future work. We also include an optimization in

functor generation: a functor also includes the recipient set,

which is the set of keys whose functor’s read set includes

this key in the transaction. The recipient set is added to a

functor whose key should be read in the computing phase of

other functors of the transaction. This optimization is used to

achieve proactive remote reads for other functors, meaning

that the computing phase of this functor involves pushing the

latest value of this key before this functor to other functors.

This optimization speeds up functor computation and is not

required for correctness.

C. Functor Computing

A transaction is transformed to a collection of functors,

and the functors from the same transaction are computed

independently and in parallel, as explained shortly.

Computing handler. The functors are computed by

handlers in the server-backend based on their f-type. In

BE storage, a functor is associated with a version of a

key (see Section III-D). Functors may be computed by a

scheduled thread pool-based processor in the BE, and may

also be computed on-demand at the time when the value is

requested by a read, whichever occurs first. Further details

regarding functor computing in ALOHA-DB are presented

in Section IV-D.

Each functor is computed by the Func procedure shown

in Algorithm 1, which calls the functor computing handler

determined by the f-type. Functors that are in their final

states with f-type VALUE, ABORTED or DELETED do

not need the computing phase. For other types of functors,

the computation begins with deciding the required version

for each key in the read set, which is the latest version

lower than the version of the functor. Reading is achieved by

calling the Get function with a version number one less than

the version number of the functor, which retrieves data from

the multi-version storage of the corresponding partition.

This is done only after the write epoch in which a functor

was written finishes. Thus, the functor computing phase is

able to determine the outcome of any transaction with a

lower version number whenever a “reads-from” dependency

exists, without blocking. Furthermore, functor computing

only accesses lower versions (historical versions), which can

be read without synchronization if they are final values. If

the lower version is a functor that requires computation,
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the reading thread will compute that functor first, and then

update the functor to its final value (line 21).

After reading the values of keys in the read set of the

functor, the handler corresponding to the f-type is called.

The values read as well as the f-argument are used as inputs

to the handler procedure. The output of the handler is used

to update the functor, and the functor is updated with the

final value at most once.

Arbitrary abort. In contrast to deterministic transaction

processing schemes that ensure transactions never abort,

ECC allows a transaction to abort either in the in-epoch

phase or in the functor computing phase. In the former case,

the FE as the transaction coordinator can send a second

round of messages to abort the transaction if any partition

fails. In the latter case, the functor computing can decide

to abort the transaction as the output, for example due to

an error condition (e.g., insufficient funds for debit). In that

case, any keys that influence the abort decision must be in

the read sets of all the functors, because they influence the

result of all functors of the transaction, and all functors must

reflect the same abort/commit decision.

Functor computing examples. We present examples of

functor computing for three consecutive transactions in Fig-

ure 5. We demonstrate the states before functor computing

on the left side, and the right side shows the states after

functor computing.

T1: multi-write $150 to A, $100 to B
Before Functor Computation After Functor Computation

account A
version f-type f-arg.
10000 VALUE 150

T2: transfer $100 from A to B

T3: transfer $100 from A to B if remaining balance is non-negative

account A
version f-type f-arg.

10000 VALUE 150
15480 VALUE 50
19600 [abort condition: 

A < f-arg.] 
SUB

100

account B
version f-type f-arg.
10000 VALUE 100

account A
version f-type f-arg.
10000 VALUE 150

account B
version f-type f-arg.
10000 VALUE 100

functors already in final values

account A
version f-type f-arg.
10000 VALUE 150
15480 SUB 100

account B
version f-type f-arg.
10000 VALUE 100
15480 ADD 100

account A
version f-type f-arg.
10000 VALUE 150
15480 VALUE 50

account B
version f-type f-arg.
10000 VALUE 100
15480 VALUE 200

readset is the key itself, local read the previous ver.

account B
version f-type f-arg.

10000 VALUE 100
15480 VALUE 200

19600
[read-set: A]

[abort condition: 
A < f-arg.] 

ADD

100

account A
version f-type f-arg.
10000 VALUE 150
15480 VALUE 50
19600 ABORT

account B
version f-type f-arg.
10000 VALUE 100
15480 VALUE 200
19600 ABORT

For A, read-set is the key itself, local read the previous version;
For B read-set is {A}, remote read A.
The functor computing result is ABORT for both A and B.

read latest value

Figure 5. Example of three transactions executed using functors over two
data items.

D. Functor Processing In ALOHA-DB

Computing the result of a functor requires reading the

previous version of any keys in the f-argument’s read set,

which means that a higher version functor may depend on

one or more lower version functors. In the BE, we use a

thread pool-based processor to asynchronously compute all

Algorithm 1: Functor computing for a specific key k.

– records[k]: array of ordered records for key k, each

record of the form <version v, f-type t, f-arg arg >
– watermarks[k]: value watermark for key k

1 Procedure Compute(k: key, v: version)
2 w ← watermarks[k]
3 // compute functors from version w to version v

for key k
4 foreach record r ∈ records[k] s.t. r.v ∈ [w, v] do
5 if r.t /∈ {VALUE, ABORT, DELETE} then
6 update r using the result of Func (k, r)

7 while w < v do
8 CmpAndSwap(watermarks[k], w, v)

9 w ← watermarks[k]
10 Procedure Func(k: key, r: record)
11 reads : container (map) for values read

12 for rk ∈ read set of functor in r do
13 reads[rk]← Get(rk, r.v − 1)
14 f : handler denoted by r.f
15 return f(reads, r)
16 Procedure Get(k: key, v: version)
17 r : latest record for k not exceeding version v
18 if r.t = DELETE then
19 return ⊥ // denotes deleted key

20 if r.t /∈ {VALUE, ABORT} then
21 Compute (k, r.v)

22 if r.t = ABORT then
23 return Get(k, v − 1)
24 return r.arg

uncomputed functors in increasing order of version number.

When a new epoch begins, all functors inserted in previous

epochs are ready to be processed, and so their meta-data (key

and version), which were buffered in the previous epoch,

are pushed to a queue for the processor to consume. Each

key maintains a watermark, namely a version number below

which all versions of functors have already been computed.

Algorithm 1 presents the pseudocode for functor comput-

ing. For simplicity, in the pseudocode the processor always

processes all uncomputed functors of a given key from the

watermark to the version obtained from the queue, and then

updates the watermark. In the implementation, the version

obtained from the queue will be processed first if it does not

depend on the previous versions of its key. This is done to

boost processing parallelism.

Processors are also responsible for remote reading when

the functor needs to read a value from another partition,

and for pushing values whereby the latest value of a key

before the functor version is sent to the functors of any keys

in the recipient set (see Section IV-B). Pushing a value is

a proactive form of reading. As described in Section III,

reads may also trigger functor computing on-demand if
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the value of a functor is not yet available. At read time,

computing a functor may involve a recursively computing

dependent functors with lower versions. However, this only

happens in the case when a read occurs for the functor before

the the asynchronous processing for that functor has been

completed.

E. Dependent Transactions

Transactions that must perform reads in order to deter-

mine the full read set and write set are called dependent
transactions [2]. This subsection presents two methods for

supporting dependent transactions in ALOHA-DB. Those

two methods do not exclude each other, and dependent

transactions can choose one or both methods based on the

transaction characteristic.

Optimistic approach. ALOHA-DB allows transactions

to abort in the functor computing phase. Thus, ALOHA-DB

can natively use an optimistic approach similar to Hyder [7],

which executes transactions by reading from a snapshot and

then performs backward validation in the functor computing.

In particular, a transaction first reads all required keys for

some timestamp (e.g. tsr), determines the write set, and

writes all functors with a timestamp (e.g. tsw). The functors

will check whether any values in the read set have changed

between the two timestamps — tsr and tsw in the example,

abort the transaction if so, and commit the transaction

otherwise.

In contrast to Hyder, where the validation procedure visits

all data versions in the log order whether or not they are

relevant to a given transaction, ALOHA-DB functor comput-

ing only requires the latest previous versions of keys in the

transaction’s read set. This allows multiple transactions to

be validated in parallel. A detailed performance comparison

between Hyder and ALOHA-DB is left as a future work.

Key dependency. For a dependent transaction, the trans-

formation from a transaction to functors that generates a

functor for each key in that write set cannot be achieved

until the functor computing phase when the functors can

read previous versions of keys. To solve the problem without

resorting to optimistic concurrency control (OCC), we defer

the write-only phase for the keys that can only be deter-

mined as part of the write set during the functor computing

phase. These keys are called dependent keys, because they

are decided in the functor computing phase of functors

belonging to other keys in the same transaction. We refer

to these functors as determinate functors, and the keys that

determinate functors belong to are called determinate keys.

For example, consider a transaction that will write key

B only if the value of key A satisfies some condition. This

transaction will choose A as a determinate key, record a

determinate functor for A in the write-only phase that will

write B (dependent key) in the functor computing phase if

the value of A satisfies the condition, and store no functor

for key B in write-only phase. If B is written, the version

number applied to the dependent key B will be the same as

that of the determinate functor, because all the writes belong

to the same transaction. Thus, whenever calling Get on the

dependent key B for a timestamp ts, the value watermark

of key A must be at least ts to guarantee that all “deferred

writes” on B have completed. In other words, for any given

version, key A’s functors must be computed first before

reading the same version for key B, otherwise serializability

may be violated.

V. EVALUATION

To evaluate the performance envelope of functor-enabled

ECC, we implemented ALOHA-DB on top of the ALOHA-

KV [5] codebase, which is programmed in C++ using the

popular open-source RPC framework fbthrift [8]. We run the

TPC-C, the scaled TPC-C (detailed in Section V-A), and the

YCSB-like microbenchmark on ALOHA-DB and Calvin [2].

ALOHA-DB fully implements the aborting requirements

for TPC-C NewOrder transactions, in contrast to the open-

source implementation of Calvin. ALOHA-DB outperforms

Calvin in terms of throughput under various contention

scenarios, indicating that our system has lower overhead for

distributed transactions even under high contention. Specif-

ically, our results show that ALOHA-DB achieves around 2

million distributed NewOrder transactions per second across

20 servers, which is 13–112× faster than Calvin.

A. Experimental Setup

1) Workload: TPC-C [9] is a standard benchmark for

online transaction processing (OLTP). Similarly to prior

work [2], [10], [11], our experiments focus on NewOrder and

Payment transactions for distributed read-write transactions.

Scaled TPC-C [1], modifies the partition-by-warehouse

approach, where each server holds all data related to one

or more warehouses, by partitioning data within one ware-

house. This workload is more suitable for stress-testing the

performance of distributed transactions. The Scaled TPC-

C treats the database as a single warehouse, partitions the

database by item and district, and simulates the behavior of

a large warehouse that spans many hosts. Our experiments

implement and evaluate the scaled benchmark, denoted by

Scaled TPC-C, as well as the conventional partition-by-

warehouse benchmark that is used in Calvin papers [2],

[3], denoted by TPC-C. Payment transactions are only

implemented in TPC-C, because the Scaled TPC-C partition

strategy in [1] removes the w ytd field from the warehouse

table, which is needed for the Payment transaction. For a fair

comparison, (non-scaled) TPC-C transactions are generated

in the same way as in Calvin: a distributed transaction

always accesses a second warehouse that is not on the same

server as the first.

YCSB [12], is a benchmark designed for Internet-scale

storage systems. YCSB does not include a standard read-

write transaction workload. We choose the YCSB-like mi-
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crobenchmark implemented in Calvin, because it has a tun-

ing knob (contention index) that can accurately specify the

contention on a partition for a distributed transaction, and it

is the main workload used in previous Calvin evaluations [2],

[3]. We reproduce the microbenchmark implementation of

Calvin [3] for experiments with ALOHA-DB. In the mi-

crobenchmark, each server contains a database partition

consisting of 1M keys. On each partition, the data items are

divided into “hot keys” and “cold keys”. Each transaction

reads 10 keys then updates the keys by increasing the value

by 1, and accesses exactly one hot key at each participant

partition. A distributed transaction touches two partitions.

When each partition has K hot keys, the contention index

(CI) is defined as 1/K. For example, a CI value of 0.01

denotes that each transaction executed on a partition must

access one of the 100 hot keys.

If not specified otherwise, all transactions in our experi-

ments are distributed transactions, which update data items

on more than one server.

2) Comparison of systems: If not specified otherwise,

ALOHA-DB uses a 25ms unified epoch duration, which

we believe provides a performance balance between write

throughput and read latency. In comparison, Calvin’s se-

quencer batches requests in epochs of 20ms, because we

found that Calvin has no significant throughput improvement

with 25ms epochs but only longer latencies, and lower

epochs result in lower throughput under the same configu-

ration. Both systems are configured for in-memory storage,

and fault tolerance is disabled by default to follow the same

convention as in the Calvin papers [2], [3].

ALOHA-DB fully implements the requirement that 1% of

NewOrder transactions must abort. Specifically, the aborted

transaction includes an item that cannot be found in the

corresponding partition, while other partitions process the

transaction as usual in the first phase of the transaction

commitment protocol. The transaction coordinator (FE) must

issue the second round of messages to abort the transaction

and roll back the processing on the other partitions. In

contrast, Calvin’s implementation does not support aborted

transactions because of its deterministic design [3]. As a re-

sult, Calvin is able to pre-assign the order id efficiently for a

NewOrder transaction, whereas ALOHA-DB must assign the

order id dynamically in the determinate functor processing

phase (see Section IV-E). Specifically, the next order id is

the determinate key of the Order, NewOrder and OrderLine

tables.

For an apples-to-apples comparison, ALOHA-DB submits

a batch of transaction requests in each RPC call, similarly

to Calvin. This ensures that neither system is bottlenecked

on the RPC layer.

3) Environment: By default, we use eight Amazon EC2

m4.4xlarge virtual machine instances with hyper-threading

disabled (8 cores total). We choose such instances because

existing Calvin code is optimized for 8-core machines. How-
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ever, we believe that ALOHA-DB has potential for higher

performance using more powerful machines. A BE/FE pair

is co-located in one process at each host and the EM

process shares one of these hosts. We present the aggregate

throughput and average latency. The transaction latency

measurement in both systems is made in the same way: from

when the transaction is issued by the client until its functors

(ALOHA-DB) or replicated transactions (Calvin) are fully

processed. Both systems focus on server-side latency, and the

latency results do not include the final response to the client.

There are three runs for each combination of parameters,

and variation across runs is indicated using vertical error

bars representing the min and max measurement. In most

cases the error bars are imperceptibly small.

B. TPC-C Experiments

1) Throughput vs. Latency: We first present the results

for throughput vs. latency of NewOrder transactions under

both TPC-C and scaled TPC-C in Figure 6. For TPC-

C experiments, two partition settings are used: 1 or 10

warehouses per host, denoted as 1W or 10W respectively.

Similarly, 1D and 10D denote 1 or 10 districts per host in

scaled TPC-C experiments.

In terms of peak throughput, ALOHA-DB achieves

around 13× (in TPC-C) and 61× (in scaled TPC-C) greater

than Calvin. Our Calvin-10W peak throughput, around 60k

tps (from a separate investigation which is not shown in

Figure 6) is comparable to the results in [3], though higher

because we use more powerful virtual machines. However,

with fewer warehouses per host or under a scaled TPC-C

workload, Calvin suffers a significant throughput drop, while

ALOHA-DB’s performance under different settings is much

more steady.

The latency results show that Calvin has higher latency

than ALOHA-DB in light workloads, while sustaining much

lower throughput. As explained in [3], preprocessing of

requests in the scheduling layer contributes to latency in

Calvin. Although, the latency in ALOHA-DB also includes
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the time functors spend waiting for the epoch to finish before

starting computing, thus the average latency must be larger

than half of the epoch duration.

2) Database Partitioning: The database partition strate-

gies affect transaction contention and distributed transac-

tion access patterns. Given the same workload in TPC-C

experiments, having fewer warehouses at one host creates

more contention for each warehouse. In particular, the Pay-

ment transaction has higher contention than the NewOrder

transaction, as it updates the warehouse table. In terms of

distribution, a NewOrder distributed transaction in TPC-C

experiments only contacts two partitions, but likely contacts

more than two partitions in scaled TPC-C where partitioning

is done by item.

Figure 7 shows the results for TPC-C NewOrder and Pay-

ment transactions with 1 to 10 warehouses per host, denoted

by TPCC, and Scaled TPC-C NewOrder trasnactions with

1 to 10 districts per host, denoted by STPCC. Considering

various numbers of warehouses per host in TPC-C, Calvin

exhibits a performance drop when the number of warehouses

decreases, and the drop is more severe when the number

of warehouses is small. For example, the throughput of

NewOrder transactions in Calvin drops from 40k to 28k

when the number of warehouses changes from 3 to 1. The

Payment transactions in Calvin begin to suffer a throughput

penalty when the number of warehouses is less than 5,

because the contention increases on the warehouse table

when each host has fewer warehouses.

In comparison, the performance drop under high con-

tention or high transaction distribution is less than 5% in

ALOHA-DB, even in the case of 1 warehouse per host

or 1 district per host experiments. ALOHA-DB supports a

high performance write-only phase thanks to ECC (see the

ALOHA-KV paper [5]), and the functor computing phase

uses fine grained (key-level) concurrency control to achieve

high parallelism. In the high contention cases, we believe

that functor computing also benefits from sequential memory

access, when many functors of the same key are processed
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together (see line 4 in Algorithm 1), while Calvin computes

keys belonging to the same transaction together.

3) Scale-Out: Figure 8 presents the NewOrder transac-

tion throughput results using up to 20 servers. We observe

nearly linear scalability with the exception of Calvin with

Scaled TPC-C. ALOHA-DB achieves up to around 2 million

transactions per second in total, which is 13–112× faster

than Calvin. For Scaled TPC-C, Calvin does not scale

well because a transaction likely needs to contact more

partitions as the number of servers increases, while it only

contacts two partitions in TPC-C. In contrast, ALOHA-DB’s

functor processing overheads do not increase significantly

when a transaction needs to contact additional partitions, as

explained in next subsection.

C. Microbenchmark Experiments

1) Skewed workload: Typically, distributed transaction

processing using conventional concurrency control suffers

under a skewed workload, because transactions are forced

to wait for the contented keys and coordination involving

remote servers (e.g., 2PC) is usually slow. Figure 9 demon-

strates the throughput of ALOHA-DB and Calvin under

various contention index settings. When the CI is less than

0.0017 (600 hot keys per partition), Calvin still performs

around the peak throughput. However, the throughput begins

to decline with a more skewed workload. ALOHA-DB does
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not suffer a significant throughput drop in these settings.

In the extremely skewed case (CI is 0.1, 10 hot keys

per partition), each partition processes nearly 97k txn/s on

average.

We also break down the latency of low and high con-

tention cases (CI 0.0001 and 0.1), under a light workload

(5% of peak throughput). Figure 10 shows the percentage

of time used in different stages of transaction processing.

In ALOHA-DB, the Functor installing stage measures the

duration from when a transaction is issued to when a

functor is installed in the BE (the epoch may be unfinished);

Waiting for processing describes the duration from when

the functor is installed to when the functor is retrieved by

processors; Processing time denotes the stored procedure

running time for the functor computing. For Calvin, Se-
quencing stage denotes the duration from when a transaction

is issued to when the partition scheduler begins to process

the transaction (comparable to the functor installing and

waiting for processing in ALOHA-DB); Locking and read
duration includes the time of locking all required locks and

reading keys in the read-set; Processing denotes the stored

procedure running time. In both systems, the processing

stage takes the minimum time, and the largest part is spent

completing the epoch. However, the latency of Calvin is

more sensitive to high contention, as in the high contention

case it spends more time in the locking phase. We believe

Calvin is bottlenecked in the single-threaded lock manager

when contention on hot keys is high.

2) Varying epoch duration: Figure 11 presents the latency

of ALOHA-DB and Clavin for various epoch durations,

under medium contention (CI 0.001) and a light workload.

From the results, we can see that the average latency is

nearly linear with respect to the epoch duration for both

systems, although the slopes are different. For ALOHA-

DB, functors need to wait half of the epoch duration on

average after they are installed in the BE, and so the linear

slope is close to 0.5. The open-source Calvin implementation

generates most of the transactions at the beginning of the

epoch. Thus, in the figure we observe that the linear slope

is close to 1 for Calvin.

D. Discussion

Here we summarize some of the design characteristics

of the two systems, and their performance implications, to

better understand the experimental results.

(1) Calvin uses partition-level concurrency control. Calvin

first replicates a transaction to all involved partitions. Each

of these partitions reads all the values in the read-set,

redundantly executes the same stored procedure on each

partition, but only writes the keys belonging to this partition.

However, as all partitions read the same read set, some

remote reads result in wasted work for a partition where the

key read has no influence on the writes performed in this

partition. Each functor is computed only once in ALOHA-

DB, which avoids the redundant transaction processing that

happens in every participating partition in Calvin.

(2) The write-only phase in ALOHA-DB has concurrency

control overhead close to eventual consistency. This point

was established in [5] by showing that ALOHA-KV has

performance close to the baseline of no concurrency control.

This is because write-only transactions in write epochs

require almost no concurrency control and the epoch switch

has minimal overhead.

(3) Multi-versioning and key-level concurrency control in

ALOHA-DB provide more parallelism than the single ver-

sioned partition-level concurrency control in Calvin, which

uses a single-threaded lock manager. Thus, even in the

extreme case of 1D or 1W where Calvin may execute

transactions one by one in a partition, ALOHA-DB still

allows different threads to compute different functors in

parallel. In ALOHA-DB, a functor cannot be computed if a

version to be read is not a final value. However, in this case

the thread will begin to compute that functor on which it

depends, rather than blocking until another thread computes

this functor (see line 21 in Algorithm 1). This resembles

a rescheduling of the functor execution, and ensures that

threads are well-utilized.

VI. RELATED WORK

There are many efforts in the research community to

support serializable distributed transactions. Many of these

use variants of traditional concurrency control mechanisms:

for example, Spanner [13] and Sinfonia [14] use two-phase

locking, whereas Centiman [15], Rococo [1], Tapir [16],
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Hyder [7], and Hekaton [17] implement OCC. However,

these concurrency control mechanisms do not scale on

many workloads, in particular update-intensive workloads.

A recent evaluation [11] shows that for these conventional

concurrency control mechanisms (excluding deterministic

scheduling in Calvin), the performance of distributed trans-

actions on a cluster only slightly exceeds that of a single

machine under a high contention read-write workload. Some

other systems trade serializability for scalability and only

support restricted transaction types [18], [19], or provide

weaker forms of isolation [20]–[22].

Some recent systems address distributed transactions

through deterministic scheduling [2]–[4], [23], or by re-

ordering conflicting transaction executions [1], [24]. As

shown in our experiments, Calvin [2]–[4] suffers from

the latency overheads related to the scheduling phase,

and moreover its open-source implementation cannot abort

transactions arbitrarily. Faleiro et al. use the placeholder

approaches [25], [26] for deterministic databases, but their

systems only handle single machine transactions and cannot

execute conflicting transactions in parallel using key-level

concurrency control. Janus [24] avoids Calvin’s redundant

execution among partitions by sending transaction logic to

partitions as pieces, targeting a more restrictive transac-

tion model (execution of each piece only accesses data

on the local partition) and only providing partition-level

concurrency control. ROCOCO [1] is a concurrency control

mechanism for distributed transactions that uses a two-

round protocol to detect conflicts and re-order transaction

execution. Our system determines the transaction order by

the timestamps generated at the start of transactions, and no

conflict detection between transactions is needed. ALOHA-

DB has superior performance compared to published results

for ROCOCO [1].

The high-level idea of executing read-write transac-

tions on top of a blind write layer (write-only transac-

tions) was previously explored in some scale-out distributed

databases [7], [27], [28]. Hyder [7] is a log-structured

database that executes transactions optimistically using a

snapshot version, and appends writes as “intentions” atom-

ically to the log. Then, a centralized validation phase is

needed to decide if the transaction should be committed

or aborted. Hyder achieves atomic multi-key writing by

atomically writing a log entry in Corfu [29], which uses

a centralized sequencer to guarantee a total order on the log

entries. This sequencer can limit the peak write through-

put of Hyder to only sub-million transactions per second.

ALOHA-DB instead orders transactions using the times-

tamps assigned by distributed front-end (FE) servers. The

processing of functors differs from the “melding” procedure

in Hyder [7] in several ways: functors are placeholders

for values whereas “intentions” in Hyder record concrete

values; functors are evaluated using the latest version of the

data as opposed to a slightly stale snapshot. Thus, Hyder

transactions are prone to aborting during the “melding”

phase under high contention, whereas ALOHA-DB never

aborts transactions due to conflicts. Furthermore, to read

the values of some keys, Hyder must “roll forward” all

the sequential log entries, even if some of the entries do

not affect the keys of interest, whereas ALOHA-DB only

needs to compute the functors that are related to the keys of

interest.

A recent paper [30] shares some similarity with ALOHA-

DB by using the techniques of epochs and a placeholder

approach for different purposes, which focuses on replaying

recovery logs other than concurrency control. In particu-

lar, functor-enabled ECC itself is a concurrency control

mechanism, while [30] addresses log replay in primary-

backup replication, which requires another concurrency con-

trol mechanism (on the primary server) to resolve conflicts

and to decide transaction ordering, and create epochs for

the backup server. The placeholder in [30] is only an empty

value, and it still uses transaction-level parallelism; functors

are placeholders and methods to get the final values, and

functors make key-level parallelism possible in transaction

processing.

The concept of functors in this paper resembles futures [6]

in modern programming languages, which are objects used

to represent the future result of asynchronous computations.

As far as we are aware, this paper is the first effort to use

functors to process distributed transactions using key-level

concurrency control.

VII. CONCLUSION

This paper proposes a transaction processing system

called ALOHA-DB for supporting high-throughput dis-

tributed transactions. We introduce a distributed protocol for

serializable read-write transactions by extending the ECC

for RO/WO transactions [5]. Our method uses write epochs

to record functors, which are objects that represent how to

evaluate the corresponding versions of values. A functor

is processed either during asynchronous batch processing

or at read time, once all versions on which the functor

depends are settled. We evaluated ALOHA-DB using the

TPC-C benchmark and the YCSB-like microbenchmark. For

the TPC-C benchmark, ALOHA-DB achieves close to 2

million transactions per second on 20 servers, which is 1

to 2 orders of magnitude faster than Calvin [2], while also

supporting lower latency and allowing transactions to abort

due to errors.
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