
Ocean Vista: Gossip-Based
Visibility Control for Speedy
Geo-Distributed Transactions

Hua Fan (Alibaba Group)
guanming.fh@alibaba-inc.com

Wojciech Golab (University of Waterloo)

conflicts

Transactions are hard. Distributed transactions are
harder. Distributed transactions over the WAN are
final boss hardness. *

2

*Andy Pavlo: https://twitter.com/andy_pavlo/status/1051974710710407176

2PC

R
ep

licatio
n

Txn 1 Txn 2

Concurrency Control (CC) is used
to provide strong consistency.

For serializable execution, CC
needs at least 1RTT exclusively
accessing conflicting data. (TAPIR:
MV+OCC)

Geo-distributed: at least 1
WAN RTT (up to hundreds ms).

https://twitter.com/andy_pavlo/status/1051974710710407176

High Performance
Geo-Distributed Transactions
Research Questions:

•Can we run conflicting transactions in parallel with strict
serializability?
• eliminate write-write conflicts and read-write conflicts (at least

partly), and keep strict serializability

•Can writes complete in 1 RTT with quorum
acknowledgement and read data from one nearby copy?

3

Two scenarios that
need NO concurrency control

4

No reads present,
transactions are write-only
and each writes a unique
version against MV storage.

No writes present, transactions
are read-only and access a
historical snapshot version.

Version
Number

V1 R

V3 R

V4
R

V7
Watermark: V=5

W

V8
V9
V11 blind write

Snapshot read

Insights
Transaction Commitment

Concurrency Control

Replication

5

are all about

visibility control

i.e., if a transaction is visible with respect
to other transactions.

Ocean Vista (OV), using multi-versioning (MV), combines these
functions into a single protocol, that gossips watermarks.

Transactions below the (visible) watermark are visible.

Contents
❑ Introduction

❑ Asynchronous Concurrency Control (ACC)

❑ Replication Protocol

❑ Experiments

❑ Summary

6

Architecture

7

Each DB Server:
• Txn Coordination
• MV storage
• Txn Execution

Gossipers:
• Redundant in

DC
• Independent

Partition3

Asynchronous Concurrency
Control (ACC)

8

Sync. Txn Processing

(1)Read all keys
(2)Compute
(3)Write all keys

ACC
a) Write functors
b) Read & Compute
c) Async. Write

Transaction life cycle:
o a) ACC writes functors (Fan&Golab ICDCS2018) as data version

placeholders & function of txn processing.
o b) Below watermark, transaction order is fixed; functors can read a

consistent snapshot version, compute the final values.
o c) Async write, replaces the functors with the final values.

above watermark

below watermark

Version Number

V1 R

V3 R

V4

Watermark

W

Example

9

Cli. Coor. A B C A B C

S-p
h

ase

Ts:10

Gossiper

wm: 12

Exe

①Write

②𝑅𝑒𝑎𝑑

③Return

④Async write

DC1 DC2

Server-wm: 12

Maybe another

WAN RTT for

gossip

E-p
h

ase

DC 1 DC 2

v10 v10 v10 v10 v10 v10

v9 v8

v10 v10 v10 v10 v10

v9

minimum latency

1 WAN RTT

10

DC1 DC2

Transaction 1

Transaction 2

Transaction 100

…

DC1 DC2

Concurrently Write Functors for T1-T100

Gossiper

DC1 DC2

T1-100 visible now

Exe T1-100 Exe T1-100

T1-100 Done!

100 Transactions under Conflicts

ACCSync. Method

…

blind write

Snapshot read

Conflict Matrix:
Parallelism when Keys Overlap
Sync. CC e.g., Spanner (2PL), TAPIR (OCC)

11

ReadSet WriteSet

ReadSet ✓ 

WriteSet  

Async. CC e.g., OV

WriteOnly ReadOnly AsyncWrite

WriteOnly ✓ ✓ ✓

ReadOnly ✓ ✓ partially

AsyncWrite ✓ partially ✓

Gossip of watermarks
• Txn versions (globally unique) are assigned by loosely synchronized clocks; version
number is server-wide monotonically increasing. [No central component]

• Watermarks are all monotonically increasing.

12

All-to-all
gossip

Partition2 Partition3

maintain server-wide
minimum in-flight version

maintain DC-wide
watermark

Based on gossip, compute cluster-
wide watermark

DataCenter

No leader,

No coordination

Contents
❑ Introduction

❑ Asynchronous Concurrency Control (ACC)

❑ Replication Protocol

❑ Experiments

❑ Summary

13

Replication Protocol

14

Write-All Read-One Must wait for stragglers or failed nodes

Write-Quorum
Read-Quorum

Pay cost on read: read leader (bottleneck)
or read quorum (more work)

Write-One Read-All Lost data on failure

OV

o Write-Quorum Read-One (common case)
o Maintain fully-replicated watermark, below it Read-

One.
o Write success in 1 RTT in fast path or 2 RTT in slow

path (NO conflicts on write, only with more failures).







☺

Fault Tolerance
❑DB Server Failure

❑Gossiper Failure

❑DC Failure

15

Detailed in the paper.

Contents
❑ Introduction

❑ Asynchronous Concurrency Control (ACC)

❑ Replication Protocol

❑ Experiments

❑ Summary

16

Experiments
Questions to answer:
◦ How much transaction processing parallelism is there

under conflicts?

◦ What is the latency overhead of gossip?

Settings:
• 3 shards and 3 replicas in Asia,EU,US, max WAN RTT 253ms

• YCSB+T benchmark, each txn read-modify-writes 4 keys

• Distribution 1: Zipf coefficient 0.5

• Distribution 2: contention index (CI), 1 hot key and 3 cold keys

• Compare with TAPIR*

17
*I. Zhang, etc. Building consistent transactions with inconsistent replication.ACM Trans. Comput.
Syst., 35(4):12:1-12:37, Dec.2018

Throughput, Latency and
Commit Rate

18

10X on
peak
throughput

Both have best
latency at 1
WAN RTT.

OV pays cost at
higher latency,
around 1 WAN
RTT.

Commit Rate:
TAPIR drops as pair-
wise conflicts
increase;
OV never aborts a txn
due to conflicts.

No abort workload

• Keyspace has only 1000 hot keys [CI-0.001]. TAPIR uses
1000 clients, each accesses unique keys. [CI-fix]
• Max throughput TAPIR can achieve, probably.

• No conflicts.

• OV uses the same key distribution but more clients.
• Has conflicts.

19

Comparable to:
14 conflicting

transactions

running in parallel

Summary

20

o Async. CC can run conflicting transactions in parallel.

WriteOnly ReadOnly AsyncWrite

WriteOnly ✓ ✓ ✓

ReadOnly ✓ ✓ partially

AsyncWrite ✓ partially ✓

o Distributed transaction protocol is all about visibility control.

o Watermarks enable simple and efficient replication.

Write-All Read-One

Write-Qrm.Read-Qrm

Write-One Read-All

Write-Quorum

Read-One

Thank you!

21

Hua Fan
guanming.fh@alibaba-inc.com

Backup Slides

22

Compute functors recursively

Computing a functor requires reading the latest snapshot version of the keys
in its read set.

The snapshot version functor will be computed recursively in the read
procedure if it is not already a final value.

Recursive execution resembles a rescheduling of the functor computing order.

23

Key A: version 10, functor(readset<B, C>….)

Key B: version 5, value 100

Key C: version 8, functor(….)

Call stack

compute A: v10

read B:v5

read C:v8

compute C: v8

Key C: version 8, value 101

Key A: version 10, value 102

